
Article citation info:

Baranski R, Galewski MS, Nitkiewicz S. The study of Arduino Uno feasibility for DAQ purposes. Diagnostyka. 2019;20(2):33-48

https://doi.org/10.29354/diag/109174

33

DIAGNOSTYKA, 2019, Vol. 20, No. 2

ISSN 1641-6414
e-ISSN 2449-5220

DOI: 10.29354/diag/109174

THE STUDY OF ARDUINO UNO FEASIBILITY FOR DAQ PURPOSES

Robert BARAŃSKI, Marek A. GALEWSKI, Szymon NITKIEWICZ

AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics,

al. Mickiewicza 30, 30-059 Kraków, Poland, e-mail: robertb@agh.edu.pl

Gdansk University of Technology, Faculty of Mechanical Engineering, str. G. Narutowicza 11/12,

80-233 Gdansk, Poland, e-mail: margalew@pg.edu.pl

Warmia and Mazury University, Faculty of Technical Sciences, 11 Oczapowskiego St., 10-710 Olsztyn, Poland,

School of Medicine, Collegium Medicum, 30 Warszawska St., 10-082 Olsztyn, Poland,

szymon.nitkiewicz@uwm.edu.pl

Abstract

Using microcontroller systems becomes a routine in various measurement and control tasks. Their wide

availability together with a huge potential of extending their functionality by additional modules allows

developing advanced measuring and monitoring systems by non-specialists. However, using popular example

codes often leads the user to pass over or not to be aware of the limitations of the system and drawing too far-

reaching conclusions on the basis of incorrectly performed measurements

This paper deals with the problem of choosing the right method for performing measurements using an

acquisition system based on the budget Arduino UNO solution. The main assumption was to use the standard,

widely available Arduino libraries. The work focuses on the scenario when data should be subject to time and

frequency analysis in the later processing. The operating limits of the device were also determined depending

on the data transmission method used.

Keywords: microcontroller, Arduino, ATmega, monitoring, data acquisition, signal analysis

STUDIUM PRZYDATNOŚCI PLATFORMY ARDUINO DLA CELÓW AKWIZYCJI DANYCH

Streszczenie

Pomiary wielkości fizycznych z wykorzystaniem układów opartych na mikrokontrolerach stają się

standardem. Ich szeroka dostępność wraz z modułami rozszerzającymi ich funkcjonalność daje możliwość

budowy zaawansowanych układów pomiarowych i monitorujących przez osoby nie będące specjalistami.

Szereg dostępnych przykładów umożliwia szybką budowę systemu pomiarowego. Niejednokrotnie

jednak powoduje, iż użytkownik jak i konstruktor nie zdają sobie sprawy z ograniczeń układu i na

podstawie pomiarów wyciągają zbyt daleko idące wnioski.

Niniejsza praca dotyka problematyki właściwej metody pozyskiwania danych pomiarowych. Na

przykładach popularnie wykorzystywanych podejść do akwizycji danych, zobrazowano nie widoczne w

pierwszym momencie skutki. W pracy skoncentrowano się na sytuacji, gdy w późniejszej obróbce dane

mają podlegać analizom czasowym lub częstotliwościowym.

Całość poparto przykładami bazując na układzie Arduino UNO. Założeniem autorów było

wykorzystanie standardowo dostępnych bibliotek.

Słowa kluczowe: mikrokontroler, Arduino, ATmega, monitoring, pozyskiwanie danych, analiza sygnału

1. INTRODUCTION

Measurement systems are becoming more and

more available and widely used. Undoubtedly, the

main merit is a significant drop of electronic

elements prices, enabling the construction of

inexpensive measuring systems [1, 2, 3]. Thanks to

the available modules, it is possible to build

monitoring systems or control devices of any type

[4]. Recently, Arduino is one of the most popular

platforms for achieving this type of goals. Its

possibilities can be demonstrated by the use in a

number of works, e.g. [1, 4, 5, 6]. Many modules

dedicated to this platform are available along with

examples of source codes enabling their

implementation in various applications. However,

people using them are not always aware of the

limitations and consequences of its use.

In case of data acquisition systems (DAQ) one

of the main elements of the system are measuring

sensors and analog to digital converters (ADC).

Almost all microcontroller families (μC) (AVR,

ARM, MCS51 and others) are equipped with ADC

converters. Current literature, both scientific and

popular science, provides a number of examples of

their use. However, they focus on the general draft

of hardware capabilities along with code solutions

that are easy to implement but omit analysis of the

https://doi.org/10.29354/diag/109174
mailto:robertb@agh.edu.pl
mailto:margalew@pg.edu.pl
mailto:szymon.nitkiewicz@uwm.edu.pl

DIAGNOSTYKA, Vol. 20, No. 2 (2019)

Baranski R, Galewski MS, Nitkiewicz S.: The study of Arduino Uno feasibility for DAQ purposes

34

effects of the application of individual solutions,

assuming that they will not have a significant

impact on the measurement result. Often some key

issues related to e.g. signal processing theory are

omitted, assuming that this subject is beyond the

scope of the simple example.

In this study, the authors try to answer the

question: what errors one can meet when applying

specific code and how inaccuracies change with the

change of the basic parameters related to signal

acquisition? With this information the reader will

be able to choose the appropriate method of data

acquisition from the point of view of the desired

application.

Arduino UNO (UNO) based on the ATmega

328P microcontroller was used as the test system

[7]. Its technical parameters in comparison with

other Arduino systems based on microcontrollers

are included in [8].

It is important to notice that the intention of the

authors was to use only the standard libraries

available for Arduino. This assumption was

connected with the utilitarian character of the

presented results because it was about checking the

possibilities of tested systems for a wide range of

recipients without limiting it to specialists

developing their own libraries.

The methods presented below were intended to

illustrate the effects of certain settings that

configure the device to work for the conscious use.

This is important because inexperienced users often

rely on solutions found on the Internet without

being aware of the significant limitations or

drawbacks that these solutions have and what are

the consequences of using them. Due to the

increasing use of measurement systems based on

the Arduino platform in scientific works [1, 4, 5, 6],

it is necessary to determine and verify the

measurement limits of this system. This goal was

also adopted by the authors of this article.

2. DATA ACQUISITION TITLE

Data acquisition is one of the essential elements

in monitoring and measurement systems. In

systems using microcontrollers only the data

transformed into digital values become useful and

are the basis for the central unit to make a decision.

That is why the credibility of the acquired data is so

important, which is influenced, among others, by

correct operation of the ADC converter and its

proper use. We usually have no influence on the

ADC converter operating principles and most of its

parameters, as it is an integral part of the

microcontroller used. Experience shows, however,

that it is not trivial to use it correctly and

consciously.

Microcontrollers from the AVR family are

single-thread devices that can only perform

sequential operations. Therefore, any occupation of

hardware resources for the purpose of, for example,

data analysis, makes it impossible to perform

another activity, such as measurement. That is why

knowledge of the time of performing individual

operations is critical. It is even more important as

these systems do not have a DMA system (Direct

Memory Access mechanism), which in more

advanced processors (e.g. ARM based) greatly

facilitates the automation of data transfer between

the ADC and the operating memory [9]. Thus,

while creating a system, it should be ensured that

the measurement, transfer of results and their

analysis do not block or delay each other. It should

be emphasized that in most cases, in addition to

measuring the physical quantity, time is also

measured - directly (e.g. by explicitly recording

information about the time instants when

consecutive measurements was made) or indirectly

(e.g. by measuring with a constant, known

frequency). What's more, the correct measurement

of time intervals between successive samples is

crucial for proper, further analysis in time or

frequency domain.

There is a need to select the appropriate

sampling rate, which is strongly dependent on the

phenomenon being studied and the needs related to

further signal analysis, where it is also necessary to

meet the Nyquist condition and other laws

regarding signal processing [10].

From the point of view of a useful frequency

band available using Arduino UNO, we can count

on sampling of several teens kHz in case of cyclic

use of data inside μC. In case of simultaneous

communication with the PC using a serial port

(which will be presented later in the paper),

frequencies of several kHz can be obtained. An

interesting feature is also the use of an external

library that allows recording signals on an SD card

with a sampling rate close to 40 kHz [11] (however,

it is not the subject of this work).

The usefulness of the acquisition system or

direct analysis of measurement data depends to a

large extent on the measurement objective. Other

sampling frequencies are necessary for the analysis

of the GSM or technical diagnostic (MHz band)

[12, 13] other for acoustics (tens of kHz) [14, 15,

16, 17] and yet another EMG signal and vibration

signal analysis (several hundred Hz) [18, 19, 20].

A separate issue is the accuracy of reproducing

the amplitude of the signal. It is a parameter that

depends directly on the range and bit resolution of

the transducer used and the amplitude of the

measured signal in relation to the measuring range

of the transducer. There are software methods that

allow to increase the resolution of the converter, but

this happens at the expense of the sampling

frequency, and their correct operation depends on

the fulfillment of a number of conditions.

Therefore, they cannot be used in every situation

[21].

If the microcontroller is used as a DAQ card, it

is extremely important, apart from the above-

mentioned elements, to access the data. Therefore,

DIAGNOSTYKA, Vol. 20, No. 2 (2019)

Baranski R, Galewski MS, Nitkiewicz S.: The study of Arduino Uno feasibility for DAQ purposes

35

one of the goals of the work was to check how does

it change in the most common cases of use:

• continuous access to data by connecting the

system to a PC,

• recording data on a medium (e.g. an SD card).

The time of a single measurement (tone_measure)

and, in effect, the signal sampling frequency will be

affected by the three basic factors shown in Fig. 1.

These are: measuring time (AD converter

operation) (tADC), signal processing / computation

time (tcomp), transmission time (sending to PC or

memory card) (tsend).

Fig. 1. Components of acquisition time

They influence the maximum DAQ system

sampling rate. Transducer operating time necessary

for data readout (tADC) is imposed by hardware and

can only be modified by changing the AD converter

clock. We can try to minimize tcomp time, assuming

that raw data is sufficient for us, because further

calculations will be made on the PC side. The

remaining part is data sending time. It depends on

the protocol configuration and the method of data

transfer. At the same time, for each of these times

the frequency of the microcontroller main clock is

affected because it determines the overall speed of

the processor.

From the point of view of signal processing, in

addition to a single sample acquisition time, a very

important parameter is the frequency of

measurement of further samples. This frequency

cannot be higher than it would result from the time

of measuring one sample. In practice, the problem

is not so much about achieving the maximum

frequency but implementing of a desired, precisely

defined sampling frequency. In order to ensure it,

the most common approach is the control of

measurement triggering with the use of timers

peripheral subsystems and interrupt mechanism.

The frequency of interrupt calls depends on the

configuration of the timers, including the

configuration of its clock signal. That’s why

sections 4 and 5 of this paper concentrate on a more

detailed description of AD converter and timer

configuration and data transmission systems as well

as their impact on the sampling frequencies.

3. METHODOLOGY OF THE STUDIES

3.1. Time measurement

One of the basic parameter of the analysis was

time measurement. The standard Arduino

environment is equipped with two functions:

millis() and micros() enabling the measurement of

time during operation of μC. Both functions are

based on the use of internal timers and Arduino

interrupts [22].

In the case of millis(), the counted time changes

every 1024 μs (hardware timer interrupt request

call). So the indicated 1 ms (1000 μs) is in fact

1024 μs. The millis() function counts the number of

timer overflows on the internal variable and is

adding value of 3 to it with each overflow. When

this variable exceeds 125, which happens every 41

to 42 ms, the counted time error is corrected by

software by adding 1 ms to the counted time value

and value of 125 is subtracted from the overflow

counter. Due to this, an additional leap of the

counted time value takes place. Time measurement

error is therefore not constantly accumulated but it

never exceeds 1 ms neither. However, one should

be aware of its occurrence. In addition, the result of

this error and its cyclical build-up and correction is

that in order to achieve a stable and accurate

measurement of time one should not use the millis()

function but consider other methods.

In the case of the micros() function, much

greater precision is obtained, however its real

resolution is 4 μs [23]. For the prescaler (i.e. the

frequency divider) implemented in the function

equal to 64 (the clock value of μC equal 16 MHz) it

gives the resolution value 64/16 MHz = 0.000004 s

= 4 μs [21, 23, 24]. The micros() function counts

the number of counter overflows multiplied by

1024 (the timer overflows every 256 cycles of its

clock signal) and adds the current timer status. The

final result of the time calculation is multiplied by 4

and is expressed in μs. It should also be added that

both functions have limitations in the amount of

time that they are able to count without a variable

overflow. The 32-bit unsigned long variable is

recommended for this purpose. For the millis()

function, it can store up to 49.71 days, and for

micros() up to 71.58 minutes.

3.2. Test system

The LabVIEW 2016 environment was used to

carry out the tests. USART system with RS232

protocol was used to communicate UNO with the

PC. Fig. 2. shows a block diagram of the data

collection and analysis software utilized.

The system uses a structure based on two loops.

VISA Read loop had the highest priority (with

Timed Loop LabVIEW mechanism). Then, the

received data was transferred by queue to the

acquiring loop, converted there and then collected

in a DBL type table (64-bit double precision float).

After collecting a certain number of data (or the

time elapsed), the data reception was interrupted

and the data was analyzed (offline analyze block in

Fig. 2.).

This solution give the opportunity to ensure the

continuity of data collection and eliminating the

impact of the analysis on the process of receiving

data from the serial port.

DIAGNOSTYKA, Vol. 20, No. 2 (2019)

Baranski R, Galewski MS, Nitkiewicz S.: The study of Arduino Uno feasibility for DAQ purposes

36

Fig. 2. A block diagram of data acquisition on

the PC side (LabVIEW)

The comparative method was used to test the

operation of the ADC transducer. The results of two

measurements (UNO and NI USB-6212) were

compared with each other. For this purpose, a

higher-grade measurement card dedicated for

cooperation with the LabVIEW environment was

used as the reference point. The NI USB-6212 card

has the following input / output parameters:

 Analog input (AI): 16 bit, 400 kHz, max

range ±10V,

 Analog Output (AO): 16 bit, 250 kHz, range

±10V.

The results of time measurements presented in

the further part of the article are based on the

measurement of time performed on the µC using

micros() function. The authors also performed time

measurements on the PC side (counting the amount

of data received in a time interval). The results of

both methods were convergent, but there were some

differences. They may result from transmission

method, the time necessary to execute LabVIEW

commands or the uncontrolled load of the PC

processor by the Windows operating system.

For this reason, it was decided to use only more

reliable timing by the µC limiting the impact of the

above issues.

4. ADC TRANSDUCERS

This section contains information related to the

correct ADC configuration. The results of

measurements were presented to check the accuracy

of the mapping of the measured signal and to

measure the time necessary to carry out the

measurement.

4.1. ADC prescaler

Arduino UNO is based on the ATMega 328P

microcontroller, which has a clock frequency of 16

MHz. The ADC transducer is also clocked at this

frequency. This is a very high frequency for a

typical use of the μC converter that consumes

significant amounts of energy. Therefore, it is

possible to lower this frequency. In order to change

the μC timing, set the appropriate ADPS2 ADPS1

ADPS0 bit (ADC Prescaler Select) values in the

ADCSRA register (ADC Control and Status

Register) [25, 26]. Table 1 presents the values of

the prescaler, the set of bits of the register and the

corresponding μC frequencies.

Table 1 Prescaler settings

Prescaler ADPS2 ADPS1 ADPS0 Clock freq (MHz)

2 0 0 1 8

4 0 1 0 4

8 0 1 1 2

16 1 0 0 1

32 1 0 1 0.5

64 1 1 0 0.25

128 1 1 1 0.125

The timing frequency is calculated according to:

𝑡𝑓𝑟𝑒𝑞 =
𝑡𝑓𝑟𝑒𝑞µ𝐶

𝑝𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑟
 (1)

For ATmega 328P with a clock frequency of 16

MHz, the choice of a prescaler value equal 16 will

reduce the clock frequency to 1 MHz. The code

appropriate for the above set-up is presented in

Code 1.

Code 1

void setup() {

 // remove bits set by Arduino

library

 ADCSRA &= (1 << ADPS2) | (1 <<

ADPS1) | (1 << ADPS0);

 // set prescaler to 16

 ADCSRA |= (1 << ADPS2);

}

In Arduino Software IDE, the default value of the

prescaler is 128. This means that if the programmer

does not change the prescaler explicitly, the

microcontroller ADC will be clocked at 125 kHz.

In addition, as the clock speed increases, the

accuracy of the ADC decreases. This issue will be

discussed in paragraph 4.2.1.

4.2. Selection of timer interrupt trigger

frequency

Interrupt is a hardware functionality that allows

to perform a given action (program code in the

form of an interrupt service function) at any time

during execution of the main program code.

Generally, interrupt is called by hardware -

externally (by changing the state of the input line

dedicated to reporting interruptions by an external

device such as a sensor, button or other

microcontroller) or internally (via a microcontroller

peripheral sub subsystem such as a timer, ADC

converter or USART system). Upon detection of

the interrupt request the processor interrupts the

currently executed program and proceeds to the

interrupt handling function ISR (Interrupt Service

Routine). This operation takes at least 4 processor

cycles [26]. Return to the interrupted program after

execution of an ISR also takes at least 4 cycles.

To obtain constant intervals between successive

moments of signal sampling (constant sampling

frequency of the signal) it is best to use one of the

DIAGNOSTYKA, Vol. 20, No. 2 (2019)

Baranski R, Galewski MS, Nitkiewicz S.: The study of Arduino Uno feasibility for DAQ purposes

37

microcontroller sub-systems dedicated to these type

of tasks, such as timers. The ATmega328

microcontroller is equipped with 3 timers called

Timer0, Timer1, Timer2 [11]. Timer0 and Timer2

are 8-bit timers (they adopt values in the range of 0

÷ 255). Timer1 is a 16-bit timer (it adopts values in

the range of 0 ÷ 65535).

In order to obtain the desired frequency of timer

interrupt it is necessary to set several parameters,

which values are defined in the configuration

registers of the μC subsystems. For Timer1 suitable

bits in the registers are intended for this:

 TCCR1B – Timer/Counter Control Register,

- Bits CS10, CS11, CS12 (Clock

Source)– defining the timer clock

signal source ,

 TCNT1 – Time Counter Register – register

enabling the writing and reading of 16-bit

values from the main timer,

 TIMSK1 – Timer Interrupt Mask Register –

a register where the sources of interrupts

reported by the timer are signaled,

 OCR1A, OCR1B – Output Compare

Registers – registers containing reference

values used by the timer comparator,

equating the timer value with the value

OCR1A or OCR1B value can trigger timer

interrupt request.

Directly from the start, the timer counts

impulses with the speed depending on the

frequency of the μC clock. Timer2 (16 bit) can

count up to 65536 values. For μC with the clock

speed set to 16 MHz, the timer will reach the

maximum value in time 0.0041 s (16 MHz /

65536), i.e. the overflow will occur at the frequency

of 244.14 Hz

Since it is usually expected to sample the signal

with a different, determined frequency, it is

necessary to adjust the frequency of timer interrupt

requests. For this purpose, the Timer / Counter

Control Register (TCCRxB) can be used, where x is

the timer number [27]. In this way the timer’s

prescaler can be set. Prescaler setting depends on

the values of CS12, CS11, CS10 bits. However,

accepted values can only be chosen in a discrete set

presented below [26, 27].

Table 2 Clock Select Bit Description [26, 27]

CS12 CS11 CS10 Description

0 0 0
No clock source (Timer/Counter

stopped)

0 0 1 clkI/O/1 (No prescaling)

0 1 0 clkI/O/8 (From prescaler)

0 1 1 clkI/O/64 (From prescaler)

1 0 0 clkI/O/256 (From prescaler)

1 0 1 clkI/O/1024 (From prescaler)

1 1 0
External clock source on T1 pin.

Clock on falling edge.

1 1 1
External clock source on T1 pin.

Clock on rising edge.

For example, if prescaler setting 1024 is needed,

the operation below must be performed:

TCCR1B |= (1 << CS12) | (0 << CS11) | (0 <<

CS10)

Thanks to this the timer overflows and interrupt

requests occur after  4,194 s

(16 MHz / 1024 / 65536), that is with frequency

0.238 Hz.

From the above relationships, a formula for the

selection of OCRxA values can be developed to

obtain the desired interrupt triggering frequency.

µ𝐶𝐶𝑆

𝑇𝐶𝐶𝑅𝑥𝐵∗𝑓𝐼𝑅𝑄
− 1 = 𝑂𝐶𝑅𝑥𝐴 (2)

Where:

𝑓𝐼𝑅𝑄 – desired interrupt request frequency (Hz),

𝑇𝐶𝐶𝑅𝑥𝐵 – the value of the prescaler resulting from

the bit settings CS12,11,10 in Timer/Counter

Control Register B,

µ𝐶𝐶𝑆 – microcontroller clock speed (16 MHz for

UNO).

This solution has a limitation. It is not possible to

obtain any fIRQ values, as the ORCxA value must be

a positive integer from thr range 0 ÷ 65355 for

Timer2 and 0 ÷ 255 for Timer1. For example, to

obtain the frequency of 500 Hz, the settings μCCS

= 16 MHz, TCCR1B = 256, OCR1A = 124 should

be used (see Code 2.)

Code 2. Microcontroller’s timers setting

int data;

void setup(){

 cli(); // all interrupts stop

 TCCR1A = 0; // set entire TCCR1A

register to 0

 TCCR1B = 0; // set entire TCCR1B

register to 0

 TCNT1 = 0; //initialize counter

value to 0

 OCR1A = 124; // computed value

 TCCR1B |= (1 << WGM12); // turn on

CTC mode

 // Set CS10 and CS11 and CS12 bits

for 1024 prescaler

 TCCR1B |= (1 << CS12) | (0 << CS11)

| (0 << CS10);

 TIMSK1 |= (1 << OCIE1A);// enable

timer compare interrupt

 sei(); // all interrupts start

}

void loop() {

}

ISR(TIMER1_COMPA_vect) {

//interrupt handler function to run

when

//Counter1 Compare Match A

 data = analogRead(A1);

}

The presented code also contains an exemplary

ISR function (TIMER1_COMPA_vect), which is

DIAGNOSTYKA, Vol. 20, No. 2 (2019)

Baranski R, Galewski MS, Nitkiewicz S.: The study of Arduino Uno feasibility for DAQ purposes

38

executed when an interrupt is called. The names of

functions performed by ISR are strictly defined in

the Arduino environment.

Table 3 List of Timers interrupts [28]

Name Syntax

Timer/Counter2 Compare Match A TIMER2_COMPA_vect

Timer/Counter2 Compare Match B TIMER2_COMPB_vect

Timer/Counter2 Overflow TIMER2_OVF_vect

Timer/Counter1 Capture Event TIMER1_CAPT_vect

Timer/Counter1 Compare Match A TIMER1_COMPA_vect

Timer/Counter1 Compare Match B TIMER1_COMPB_vect

Timer/Counter1 Overflow TIMER1_OVF_vect

Timer/Counter0 Compare Match A TIMER0_COMPA_vect

Timer/Counter0 Compare Match B TIMER0_COMPB_vect

Timer/Counter0 Overflow TIMER0_OVF_vect

The presented calculations and an example

concern the use of 8 bit Timer1.

When using timers, it is important to keep in mind

that some standard functions and libraries also use

them, so the programmer should be careful and

assure that conflicts do not occur. For example,

Timer0 is utilized by functions like millis() and

micros(), Timer1 is used by the Servo library

functions and Timer2 – by the tone() function.

In case when there is more than one timer used

in the code (including situation when, for example,

the timers are used by functions from other

libraries), Timer2 interrupts have a higher priority

than Timer0 and Timer1 interrupts [26, 29].

4.2.1. Influence of ADC clocking on measured

values

In signal processing, the correctness of the

measured value mapping is one of the key

elements. Erroneous amplitude measurements lead

to erroneous analize, which ultimately causes

erroneous conclusions.

At first the linearity in the entire measurement

range of the converter was checked. The method

relies on a measurement of a preset, constant

voltage values repeated 1000 times. Measured

values are averaged then. Preset voltages were

generated using 16-bit NI USB-6212 analog output

channel.

What’s important, the Arduino UNO measuring

system uses 5V as the reference voltage (URef)

obtained from the voltage stabilizer. Therefore, it is

assumed that the resolution of the 10-bit ADC is

5 V / 1023 = 4.887 mV. However, this approach

may lead to misinterpretation of results, because the

URef (5V by default) may not be exactly as

assumed. In our case, the measured URef was 4.52V

(measured with a voltmeter between GND and 5V).

Hence the actual resolution of the AC converter

was 4.418 mV. In the data sheet [26] and in the

paragraph 1.6 of [30] a record regarding the so-

called gain error is described. Its elimination is

based on the measurement of the minimum and

maximum values, and then the software correction

with the corrective curve determined in this way is

advised to be applied.

The above advised activities were performed.

The results of the measurements after calibration

are presented in Fig. 3. The identified error reaches

a maximum of about 8 mV (which is ≈2 ADC

quantization levels).

Fig. 3. Measure Error

Next, the measurement of the stability of the

measured voltage were performed. Each

measurement lasted about 10 seconds (with

sampling = 1 kHz). The voltage was generated at

the analog output of the NI USB-6212 card and

then it was connected to the input of the ADC

converter in the UNO and, at the same time, to the

analog input of the NI USB-6212 card.

Table 4 Voltage stability

NI USB-6212

analog output value

Arduino UNO

analog output value

Umean

(V)

std

(µV)

max-

min

(mV)

Umean

(V)

std

(µV)

max-

min

(mV)

0.0522 0.2 3.29 0.0178 2.3 4.89

0.5174 0.2 2.96 0.5009 2.4 4.89

1.1673 0.2 1.81 1.1774 1.5 9.77

2.1876 0.2 1.32 2.2385 0.4 9.77

3.9382 0.2 1.32 4.0544 2.5 9.77

According to the data above, we can observe

several elements. The increase in the measured

value increases the difference between the NI and

UNO card indications. Differences in maximum

and minimum values read by UNO are 1-2 levels of

quantization. Although the absolute values of these

differences compared to the results from the NI

USB-6212 card seem to be significant, the stability

achieved can still be considered as good

considering the 10-bit resolution of the AD

converter in UNO.

The abovementioned measurements were

performed for the default prescaler (set at 128),

which results in ADC clock frequency = 125 kHz,

which is the recommended value.

According to the documentation [23], the

accuracy of the AD converter decreases with the

increase of the μC clock frequency. According to

paragraph 1.8 of [23], "The ADC accuracy also

depends on the ADC clock. The recommended

maximum ADC clock frequency is limited by the

-10

-8

-6

-4

-2

0

2

0,0 0,4 0,9 1,3 1,8 2,2 2,7 3,1 3,5 4,0 4,4

m
ea

su
re

 e
rr

o
r

(m
V

)

voltage (V)

DIAGNOSTYKA, Vol. 20, No. 2 (2019)

Baranski R, Galewski MS, Nitkiewicz S.: The study of Arduino Uno feasibility for DAQ purposes

39

internal DAC in the conversion circuitry. For

optimum performance, the ADC clock should not

exceed 200 kHz. However, frequencies up to 1 MHz

do not reduce the ADC resolution significantly.”.

Thus the timing used is in accordance with the

manufacturer's guidelines.

In order to check the effect of the prescaler

described above on the reading value,

measurements were taken for the setpoint voltage

of 0.90523 V and 3.612 V, matched so that their

values correspond to the selected integer-valued

quantization level of the 10-bit Arduino UNO

converter at the URef voltage of 4.5217 V. The

generated voltage was characterized by a stability

of ±0.66 mV. Fig. 4. shows the mean values of

1000 measurements with maximum and minimum

values. It can be seen that the average measured

value, as expected, oscillates around the constant

quantization value for all measurements. This can

be interpreted as a good stability of the obtained

results when using the averaging of the measured

signal.

However, it should be noted that as the prescaler

decreases (increasing the clock frequency of the

ADC), its accuracy is noticeably reduced, resulting

in an increase in the maximum and minimum

values. This is especially evident for a prescaler

values less than 8, which corresponds to an ADC

clock frequency over 1 MHz. It should be noted

that according to paragraph 1.8 of the document

[30] „Operating the ADC with frequencies greater

than 1 MHz is not characterized” so we can expect

deterioration in ADC characteristics for such

frequencies.

Fig. 4. Stability of quantization depending on the ADC

prescaler

The situation was similar in for the

measurements of other voltage values.

No results were presented for the prescaler 2,

because regardless of the measured voltage, the

ADC returned 1023 value or close to it so the

correct voltage measurement was not obtained. This

behavior of the transducer completely eliminates

the use of prescaler 2 for measurements.

4.3. Measurement time and frequency

The subject of the research was to determine the

time necessary to read data from the AD converter.

Due to the fact that the microcontroller tested has

the ability to change the prescaler responsible for

clocking the ADC converter, its influence on the

measurement time was checked.

In order to eliminate the influence of the time

necessary to measure the implementation of the

micros() function on the obtained results, the

measurement of an empty loop performed 1000

times was performed. The average time of a single

measurement was 0.47 (± 0.0038) μs. This value

was included in further calculations.

4.3.1. ADC prescaler

In order to present the operation of the interrupt

mechanism, Arduino UNO working at a default

clock rate of 125 kHz, with a prescaler equal to 128

(Code 3) was used. All measurements were

performed for voltages from the entire ADC

measuring range. Regardless of the voltage value

measured, the results were identical.

Code 3

unsigned long time1;

int data, i;

void setup(){

 Serial.begin(115200);

}

void loop(){

 time1=micros();

 for (i=0; i<1000;i++){

 data=analogRead(A0);

 }

 time1 = micros()-time1;

 Serial.println(time1);

}

According to the documentation, the ADC

requires 13 clock cycles to read the value (the

exception is the first reading occupying 25 cycles) -

see paragraph 28.4 of the documents [26] and [27].

The ADC clock in Arduino UNO works with a

maximum frequency of 16 MHz. By default, the

prescaler has a value of 128, which reduces the

clock speed to 125 kHz (16 MHz / 128). At this

clock frequency, the theoretical maximum reading

frequency from ADC is 125 kHz / 13 ≈ 9615 Hz.

The Table 5 shows the time to read 1000 of data

from the ADC converter (for one channel).

Informatively, the frequency fptheo (theoretical

frequency period) was calculated on its basis and

was compared to the theoretical frequency resulting

from the μC clocking. The value of fpmea (frequency

period measured) was computed based on mean

time. There was also Standard Deviation (std),

Maximum (max), and Minimum (min) time

calculated.

It should be emphasized that from the point of

view of usability of the AD converter there is no

justification for using a prescaler with setting 2.

810

812

814

816

818

820

822

824

826

828

830

195

200

205

210

215

220

225

128 64 32 16 8 4

q
u

an
ti

za
ti

o
n

 le
ve

l (
3

.6
 V

)

q
u

an
ti

za
ti

o
n

 le
ve

l
(0

.9
 V

)

ADC prescaler

205 818

DIAGNOSTYKA, Vol. 20, No. 2 (2019)

Baranski R, Galewski MS, Nitkiewicz S.: The study of Arduino Uno feasibility for DAQ purposes

40

Table 5 ADC time – prescaler influence

ADC

pre-

scaler

f. ADC

(kHz)

mean

(µs)

std

(µs)

max

(µs)

min

(µs)

fpmea

(kHz)

fptheo

(kHz)

4 4000 5.251 0.00340 5.260 5.240 190.4 307.7

8 2000 8.597 0.00516 8.612 8.584 116.3 153.8

16 1000 15.561 0.00454 15.576 15.556 64.3 76.9

32 500 29.643 0.00357 29.648 29.636 33.7 38.5

64 250 55.542 0.00346 55.544 55.536 18.0 19.2

128 125 111.544 0.00416 111.56 111.54 9.0 9.6

Despite the influence of the loop on time

measurement the difference between the measured

time and the theoretical one is noticeable. It results,

among others, from the fact that theoretical fp only

takes into account the processing time (13 cycles of

the transducer), but not taking into account the

operations performed by μC such as reading the

measured value from ADC registers, returning this

value by the analogRead() function to the variable

'data' or the interrupt handling time for Timer0

interrupt used by the micros() function.

According to theoretical assumptions, the

increase in the prescaler increases the time needed

to perform the analogRead() function almost twice.

This is observed down to the prescaler value of 8.

Below this value the time measurement results are

significantly influenced by commands and

functions performed outside the read operation of

the ADC value (note that we only interfere in the

ADC converter prescaler, μC works at a fixed

frequency). In addition, the clock rate of ADC with

frequencies higher than 1 MHz is not

recommended, as previously mentioned.

It is worth noting that the change in the ADC

timing does not affect the speed of data

transmission. For example, for BR = 115200 bps,

the PC data receive frequency was ≈2350 Hz, for

all μC prescaler values.

4.3.2. Sampling triggering using the timer and

interrupts

The interrupts are a method of triggering the

measurement of the signal from the ADC with the

highest certainty regarding the uniformity of the

measurement time. For this purpose, Code 4 was

implemented in UNO. The time of triggering the

interrupt by the algorithm implemented in μC was

measured for 30 seconds for each case.

In Code 4 Timer1 has been set to CTC (Clear Timer

on Compare Match) mode. It is achieved by setting

the value 1 of WGM12 (Waveform Generation

mode) bit in the register TCCR1B (Timer / Counter

Control Register) and 0 of WGM13 bit in the

register TCCR1B as well as WGM11 and WGM10

bits in the register TCCR1A. The counter prescaler

is set to the value of 8, which means the clock

frequency is set at 2 MHz. Entering the value of

1999 in the OCR1A register will result in the

frequency of timer interrupt request reporting equal

to 1000 Hz.
Code 4 ADC – interrupts

unsigned long time1, time2;

void setup(){

 Serial.begin(115200);

 cli(); // all interrupts stop

 TCCR1A = 0; // set entire TCCR1A

register to 0

 TCCR1B = 0; // same for TCCR1B

 TCNT1 = 0; //initialize counter

value to 0

 OCR1A = 1999; // computed value

 TCCR1B |= (1 << WGM12); // turn on

CTC mode

 TCCR1B |= (0 << CS12) | (1 << CS11)

| (0 << CS10); // prescaler to 8

 TIMSK1 |= (1 << OCIE1A); // enable

timer compare interrupt

 sei(); // all interrupts

start

}

void loop(){

}

ISR(TIMER1_COMPA_vect) {

time_tmp=micros();

time1=time_tmp-time2;

time2=time_tmp;

 Serial.println(time1);

}

The results of measurements of the time after

conversion to the sampling frequency fpmea are

presented in Table 6. In addition to the register

settings for the Timer1 counter and the determined

values of fp, it also contains the desired frequency

value (fpdes).

Table 6 Interrupts - time measurement

Timer1 mode OCR1A
time

(µs)

std

time

(µs)

fpdes

(Hz)

fpmea

(Hz)

CTC 24999 12500.0 2.9 80 80.0

CTC 19999 10000.0 2.9 100 100.0

CTC 1999 1000.0 0.5 1000 1000.0

CTC 1249 625.0 1.8 1600 1600.0

CTC 999 500.0 2.7 2000 2000.0

CTC 639 320.0 0.0 3125 3125.0

CTC 399 200.0 0.5 5000 5000.0

DIAGNOSTYKA, Vol. 20, No. 2 (2019)

Baranski R, Galewski MS, Nitkiewicz S.: The study of Arduino Uno feasibility for DAQ purposes

41

It can be observed that the obtained results are

equal to the theoretical values. It should be noted

that the measurements were repeated several times

and each time identical results were obtained,

confirming the stability of internal µC time control

methods like interrupts.

In the further part of the article, the principle of

timer configuration so that the sampling frequency

of the signal would be an integer value was applied.

Such a solution enabled a trouble-free further

analysis in any computing environment.

The stability of the interrupt triggering time with

the use of an external device was also determined

(for several selected interrupt settings). To this end,

whenever the interrupt was called, the state of one

of several digital output (DO) of the Arduino UNO

was reversed and the time between successive

changes was measured. Measurements of the DO

signal were performed using the NI 6251

measurement card, with signal sampling set to 1.25

MHz for a period of 10 seconds. The Table 7 shows

the results obtained for the selected frequencies.

Table 7 Stability of the trigger frequency of the

interruption from the counter Timet1 overflow

fp

(Hz)

fpcomp

(Hz)

mean time

(ms)

std

(µs)

32 31.98 31.27 0.59

80 79.95 12.51 0.47

100 99.94 10.01 0.39

2000 1998.8 0.5003 0.47

3125 3123.2 0.3202 0.42

10000 9994.1 0.1001 0.49

20000 19988.2 0.0500 0.54

On the basis of the presented results it can be

stated that the interrupt triggering time was stable.

This is evidenced by the repeatability of the

standard deviation for individual frequencies. At

the same time, there are differences between the set

frequency (fpcomp) and the calculated frequency

(fp). These differences are proportional to the

frequency and, for the tested specimen of the UNO

kit, reach 0.059375% of fpcomp.

In the opinion of the authors, the above may

indicate a discrepancy between the clock periods in

Arduino UNO and NI 6251 cards. To confirm this

observation these differences were examined for

three different copies of Arduino sets. Assuming

the clock of the National Instruments (NI) card as

the reference point, the difference between the

average clock frequency for these chips and the 16

MHz value was calculated from the measurements:

 UNO (original): 20 081 Hz below 16 MHz,

 UNO (clone): 9 824 Hz below 16 MHz,

 NANO (clone): 10 605 Hz above 16 MHz.

These tests confirm the difference between

clocks for different systems, which may cause some

discrepancies when comparing results obtained

with the use of several Arduino systems. It should

be noted, however, that this is a normal

phenomenon resulting primarily from the fact that

ceramic oscillators have been used in the above-

mentioned Arduino sets. This type of oscillators

usually have a frequency tolerance of ±0.5%, so for

16 MHz they can show up to 80 kHz difference

from the nominal value. The differences shown in

Table 7 will not have a significant impact on the

reliability of time measurement or triggering ADC

using interrupt, provided that the measurement will

be short. However, in the case of measurements

lasting longer in time, one can expect a noticeable

error in time (or frequency) measurement. For

example, after 24 hours in the UNO system under

consideration the delay in time measurement would

be over 50 s. Therefore, if the accuracy of time

measurement is important, it is recommended to

replace the μC resonator from ceramic to quartz.

Quartz resonators usually have a frequency

tolerance 100 ÷ 500 times better than ceramic

resonators. It is worth noting that on the Arduino

UNO board the resonator used by μC is placed

close to the processor chip and has small

dimensions, and it is often confused with a larger

resonator located near the USB connector, which is

used by the USB transmission system and which

has a frequency of 16 MHz as well. It should be

emphasized that the resonator exchange will

positively affect not only the timers accuracy but

also the interrupt triggering frequency, as well as

the stability and accuracy of all timing and clock

signals in the entire μC system, including the ADC

timing.

4.4. Total Harmonics Distortion

The THD (Total Harmonics Distortion)

parameter is one of the basic indicators used to

parameterize the signal quality. It informs about the

amount of harmonic components present in the

signal in relation to the main signal component. It is

used when the excitation signal is a mono-harmonic

sinusoidal signal. The occurrence of harmonic

components can then be interpreted as the

frequency or amplitude disturbances occurrence in

the signal (or in the measurement process).

As a reference, a 100 Hz sine signal generated

by the NI USB 6212 card (16bit, ±10V, sampling

rate 400 kHz) was used. This signal was recorded

by the UNO and the NI 6212 card with the same

sampling rate of 1600 Hz. Each measurement lasted

10 seconds. The recorded signal was then subjected

to THD analysis in the LabView environment. The

measurements were carried out for NI and UNO

cards connected to a desktop computer and a laptop

running on battery power (in order to separate it

from an AC power grid). For comparison, identical

measurements were made using the NI USB 6212

card. The results are presented in Table 8. Detected

sine amplitude is denoted as amplitude. Description

no, TXT means sending text data without using the

interrupt mechanism. Similarly, in case of no, BIN

– interrupts were not used and data was sent in

DIAGNOSTYKA, Vol. 20, No. 2 (2019)

Baranski R, Galewski MS, Nitkiewicz S.: The study of Arduino Uno feasibility for DAQ purposes

42

binary form (this will be further discussed in

section 5 of the paper).

Table 8 THD measurements in various operating

conditions

Mea

system

THD

(%)

amplitud

e (V)

power

source

interrupt

s
fp (Hz)

NI621

2
0.015 0.707 battery yes 1600

NI621

2
0.010 0.707 power grid yes 1600

UNO 0.085 0.792 battery yes 1600

UNO 0.488 0.833 power grid yes 1600

UNO 0.704 0.826 power grid no, TXT 2351.4

UNO 0.875 0.830 power grid no, BIN 2939.56

THD

Analyzing the presented results, a strong

dependence of the THD levels on the power source

can be noticed. In the case of battery power supply

they are an order of magnitude lower than in the

case of power supply from the power grid. For

comparison, for the NI6212 card, the THD value

achieved similar values regardless of the power

supply method.

In the case of control of the measurement time

(interrupts) a significantly lower THD was

obtained. It demonstrates, among others, the degree

of sampling irregularity in the case of using

software triggered measurements.

It should be mentioned, that simulation was

carried out, where the generated signal (sine wave

with 1 V amplitude) was subjected to virtual

quantization by an ideal 10-bit converter. Obtained

THD value was 0.085%. This value is consistent

with the result obtained for measurements using

UNO with battery powered laptop. This indicates

proper operation of the converter, which does not

introduce distortions greater than those resulting

from its finite resolution.

Amplitude

Another element that was pointed out was the

amplitude of the measured signal. While the

difference in voltage indications between the

NI6212 and UNO card may result from different

levels of the reference voltage (the topic has been

raised earlier), the essence is the observation that in

the case of NI6212 card this value is constant

(regardless of the cooperating device), while UNO

changes the level depending on the power source.

Although for a fixed power source, the obtained

value can be taken as a constant, but it should be

noted when comparing two values measured on

different devices.

The solution to this problem may be an

independent reference source (which many users

recommend).

4.5. Summary

The presented research shows the impact of the

AD converter's configuration and the chosen

trigerring method on the stability of the sampling

frequency and the measurement quality. As

mentioned in chapter 1, other factors also influence

the measurement time, i.e. the time of sample

processing and transmission. The transmission time

will be analyzed in section 5.

It is worth mentioning that in addition to

triggering the ADC measurement in the interrupt

service routine, the ATMega 328P microcontroller

has Auto Trigger mode as well. In this mode the

ADC can be automatically (without an explicit call

of the interrupt service routine) triggered by one of

several signals - including the counter. It is

possible, for example, to configure the timer to

countdown the preset time and once it is counted

the next sample measurement performed by the

ADC is started internally by the hardware. After

each conversion the ADC may report an interrupt to

indicate the end of one measurement. The

advantage of this mode is the lack of a potential

delay between the time count down and ADC

triggering in the interrupt routine handling which

may occur in the method described in chapter 4.3,

especially when multiple interrupts are used by the

system. In this mode measurement may be

performed even more evenly over time. However,

this mode can be configured only by directly setting

the appropriate values of registers controlling the

timers and ADC - it is not available from the

standard Arduino libraries.

5. COMMUNICATION

The chosen communication method imposes the

speed at which recorded signal values from the

ADC can be transmitted. Among many forms of

communication, the authors focused on the two

most commonly used methods: serial

communication using the RS232 protocol (USART

system) and data recording on an SD card.

5.1. Serial port (Baud Rate)

In case of using Arduino UNO as a DAQ card

cooperating with a PC the important parameter is

the time of sending data to a computer. The baud

rate (BR) is the main parameter to be set. The most

common settings are in the range of 9600 ÷ 115200

bps (bits per second), but they can also take other

values (in the present work a range of up to 2

million bps was tested). In Arduino platform the

Serial library is used for this purpose. The most

commonly used function is Serial.print(). It sends

any string of characters in the ASCII code. Its

extension is the Serial.println() command, which

also adds the carriage return character '\r' and the

new line character '\n' at the end of transmitted

string. One of its benefits is easy separation of

transmitted values. Data transmission in text form is

also convenient because its access to data on a PC

DIAGNOSTYKA, Vol. 20, No. 2 (2019)

Baranski R, Galewski MS, Nitkiewicz S.: The study of Arduino Uno feasibility for DAQ purposes

43

side is possible without having to write your own

data transmission and presentation program. All

you need to do is to use common terminal

emulation programs.

Unfortunately, the transmission in the text form

has a significant disadvantage - the bandwidth of

the serial link is not fully used. For example, the

measurement result from a 10-bit converter can

have a maximum of 4 decimal digits. After adding

the end-of-line characters, we receive six 8-bit

values. Sending the result directly in binary form

will require the transmission of only two 8-bit

numbers (10 bits of the result and 6 zero bits which

complementary counts up to 16 bits), so it will last

3 times shorter. However, it will require their

decoding on the PC side.

In order to limit the influence of the value of the

transmitted variable (as it is in the text form), the

same number of 1023 was sent repeatedly. This is

the maximum value that can be returned by the AD

converter. At the same time it contains the largest

number of characters, therefore it will take the most

time. Thanks to this, it was possible to control the

correctness of sending and receiving data by

checking whether the average value of the received

data was 1023 and the standard deviation is equal to

0, which was interpreted as error free receiving data

sent from the microcontroller.

In case of Arduino, the connection setting

process is simplified to declaring BR values using

the Serial.begin() command. Other parameter such

as word length, parity bit, or stop bit can be set as

well, however, the vast majority of applications

meet the use of default settings (8 bit word, no

parity, 1 stop bit).

Below are presented the pros and cons of using

the two most popular methods of obtaining data

from Arduino: data transfer in the form of text

(ASCII code) and binary one.

Text data

The simplest method of using Arduino UNO for

data transmission is the use of Code 5. It is a

method of sending only one datum each time. The

code has been supplemented with the necessary

functions to measure the time of sending. In order

to distinguish the measurement data received by the

PC from the sent 1023 value, the time value has

been increased by 2000.

The code measured the time of sending a single

datum each time. The measurement series lasted 30

seconds each.
Code 5

unsigned long time1;

void setup(){

 Serial.begin(115200);

}

void loop(){

 time1=micros();

 Serial.println(1023);

 time1=micros()-time1;

 Serial.println(time1+2000);

}

The obtained results are presented in Table 9.

To present the stability of the measured parameters,

the percentage coefficient of variation (Vx) was

used.

Table 9 Text send time

baud rate

(bps)

send time

(μs)

std

(μs)

Vx

(%)

fpmea

(kHz)

1 200 50 008.60 1.88 0.004 0.020

2 400 24 989.20 2.17 0.009 0.040

4 800 12 509.10 2.12 0.017 0.080

9 600 6 240.25 0.97 0.016 0.160

19 200 3 120.12 0.69 0.022 0.321

38 400 1 559.93 1.12 0.072 0.641

57 600 1 016.58 1.42 0.139 0.984

115 200 508.05 1.15 0.227 1.968

250 000 238.28 4.88 2.048 4.197

500 000 239.52 5.17 2.157 4.175

1 000 000 213.38 2.80 1.313 4.687

2 000 000 204.00 3.05 1.495 4.902

For clarification, frequencies fpmea

corresponding to the times with which μC sends

data by USART are also presented. Measurements

show that by using popular transmission speeds (up

to 115200 bps), data reception frequencies up to 2

kHz can be achieved. However, importantly, even

increasing this number to 2 Mbps results in a

maximum value of 4.9 kHz only.

It should be noted that for the time measurement

for values below 115200 bps, the obtained data

sending time was characterized by very good

stability, as evidenced by the very low value of Vx

(below 0.227%).

Some limitation of the above approach is the

dependence of data reception on the free resources

of the PC. Therefore, the simultaneous execution of

other activities on the computer brings a

considerable risk of impact on the time of data

reception and, ultimately, even their loss (data

reception control is not implemented).

In addition, by analyzing Code 3, it can be seen

that if this code was to replace the

Serial.println(1023) line with analogRead(A0), it

would be possible to obtain a simple measurement

of signal samples and their transmission. However,

it should be emphasized that in the case of

measurements of signals from the entire measuring

range of the ADC, the number of characters in

subsequent samples will be different, which will

change the time necessary for data transmission.

Triggering subsequent measurements will be

implemented programmatically and additionally

dependent on the time of sending the previous

sample, so the signal sampling frequency will vary

which practically disqualifies such an approach in

serious measurement applications, where

uniformity of sampling usually has key significance

for signal analysis.

Binary data

Transferring data in a binary form is a much

more economical method than sending them in text

DIAGNOSTYKA, Vol. 20, No. 2 (2019)

Baranski R, Galewski MS, Nitkiewicz S.: The study of Arduino Uno feasibility for DAQ purposes

44

form. A numerical value is sent immediately,

without its previous conversion to ASCII

characters. This means reducing the number of

bytes necessary to send the same amount of

information as well as saving the time necessary for

both the transmission itself and the previous

conversion of data into a text form. When sending

data in binary form, the write() function should be

used which sends individual bytes.

Due to the fact that data from the ADC of the

ATmega328P microcontroller are 10 bit, they must

occupy two 8-bit bytes. This, in turn, means that

16-bit number to transmit must be divided into two

bytes. This can be obtained by the Code 6 presented

below.

Code 6 To BIN conversion

A = data & 0xFF;

B = (data>>8) & 0xFF;

Serial.write(A);

Serial.write(B);

In this case, the variable 'data' is, for example,

the result of the measurement with AI. For the

assumption that datum value is 1023, it will look

like this: from the number 00000011 11111111

(BA), clear the older byte and assign only the

second (younger) to A; then the binary number

00000011 11111111 move right by 8 bits, the string

will remain 000000000 00000011 and only the

younger byte is assigned to B. Next, send byte A

and then B. The received number on the PC side

should be interpreted as A + B * 256.

For the data transferred in this way, the

frequency of data reception by μC was measured

again, obtaining the highest possible value of the

frequency of sending data in a binary manner. The

number 1023 was sent (among others to identify the

correctness of the received data). The following

code was used:
Code 7 BIN send time

unsigned long time1;

int data=1023;

void setup() {

 Serial.begin(9600);

}

void loop() {

 time1=micros(); //trans. time

measurement starts

 Serial.write(data & 0xFF);

 Serial.write((data>>8) & 0xFF);

 time1=micros()-time1; // trans.

time measurement ends

 Serial.write(13); //new line

 Serial.write(10);

 Serial.println(time1+2000); //send

measured trans.time

}

Obtained results of time measurements are

presented in Table 10. To comparison, the results of

sending text data and calculated sampling

frequency fp for different BR values obtained for

sending text using println() are also presented there

(selected data from Table 9).

Table 9 Comparition – bin vs ASCII

µC

BR

(bps)

time (µs) fp (kHz)

write() println() write() println()

9600 2076 6240 0.482 0.160

57600 340 1017 2.942 0.984

115200 166 508 6.007 1.968

250000 71 238 14.147 4.197

500000 22 240 46.100 4.175

1000000 21 213 46.791 4.686

2000000 12 204 83.431 4.902

According to the theory, more than triple time

reduction in relation to the println() function can be

observed.

It should be emphasized that in the case of BR ≥

250000 bps, the value of fp does not change almost

linearly as it does for lower bps. The reasons for

this can vary. Among other things, this may be the

result of the implementation of text conversion and

transmission support in Arduino standard libraries.

At high BR, minor nuances affecting the

performance of libraries begin to have noticeable

effect because the time remaining between sending

consecutive bytes of transmitted information is very

short. Thus, the time it takes for the preparation of

the next byte to be sent becomes critical. In

addition, it is worth noting that the actual bps value

that the USART system implements results from

the division of processor clock frequencies by

integer values and may differ from the set, expected

bps [12]. For the same reason the actual bps may

also differ from the bps set in the device (eg PC) on

the other side of the communication channel. In

addition, the CPU clock speed itself may differ

slightly from the assumed one (see - considerations

in section 4.3.2). In the event of actual

discrepancies in the BR in transmitter and the

receiver there may be errors during the transmission

(e.g. lost or distorted data frames). However, during

the tests of this type, errors occurred only for bps

above 500000, and in addition they were sporadic

(less than 0.002% of the number of bytes sent).

Electrical characteristics of connected devices and

the connecting wire itself as well as transmission

line length may also have a noticeable impact

(especially for high BRs) on the amount of

transmission errors.

To summarize, although the transmission is

possible even for the highest available bps, a

sensible practical approach would be to use the

speed of up to 250000 bps.

5.2. SD card

This section presents the results of research on

determining the time necessary to record data on an

SD card.

To support SD and SDHC memory cards, the

SD library is used by default and the SPI library is

DIAGNOSTYKA, Vol. 20, No. 2 (2019)

Baranski R, Galewski MS, Nitkiewicz S.: The study of Arduino Uno feasibility for DAQ purposes

45

responsible for communication with the card

module. Both libraries should be attached to the

code. It is worth mentioning that if the SPI protocol

is used, its capabilities may limit the maximum data

transfer speed to the memory card.

The times of writing data to the SD card have

been checked in two variants: measurement of the

continuous recording time for 1 second and

measurement of the time of single data recording.

Using the function println() and write(), the file was

written in in text and binary formats. For this

purpose the code presented in Code 8 was used.

Using it we can write to the file file.txt 1023 for a

period of 1 second.

Exactly 60 files have been saved for each type

of data (text and binary). In the case of textual data,

the record took on average 412.3 (±49.7) μs (2456

(±258) values). In the case of binary data as

expected, the recording time was nearly three times

shorter 132.9 (±11.6) μs (7575 (±579) values). A

standard deviation is given in brackets.

Code 8 SD card configuration

#include <SPI.h>

#include <SD.h>

unsigned long t_max;

File myFile;

void setup() {

 SD.begin(4);

 myFile = SD.open("file.txt",

FILE_WRITE); //open file

 unsigned long t_max = micros() +

1000000; //time to measure

 while (micros() <= t_max) {

 myFile.println(1023);

//print to file

 }

 myFile.close();

//close the file:

}

void loop(){

}

A time measurement was also performed using

the modified while loop with Code 9. After

modification, the code measured the time of a

single datum write to the SD card and then sent the

measured time to the PC. The variable date has

been declared as follows:

int data = 1023;

It was the longest data to measure using ADC

converter. The code enables writing data in the

form of ASCII characters (the myFile.println()) or

in a binary form (myFile.write()). It is presented in

Code 9. In order to measure the data record in a

proper way, the second method should be marked

as a comment (using //).

Code 9 SD – save time

while (micros() <= t_max) {

 time_1=micros();

 myFile.println(data);

//save ASCII

 // myFile.write(data & 0xFF);

//save binary

 // myFile.write((data >> 8) & 0xFF);

//save binary

 time_1=micros()-time_1;

 Serial.println(time_1);

}

The measurement was repeated several times,

each time saving several thousand values. The

average time of writing text data was 239.9 μs. In

the case of writing binary data, an average

recording time of 77.7 μs was obtained.

The above test showed that the method of

writing to an SD card does not guarantee a

permanent recording time, as it was characterized

by Vx volatility of 10%. This is due to the internal

Flash memory structure (depending on the

situation, for example, it may perform additional

data copying operations).

6. FINAL TESTS

All previously presented results focused on the

components affecting the measurement. The final

results of the time measurement are presented

below and referred to the components obtained

earlier.

Fig. 1 presents a simplified diagram of the

division of the μC work from the point of view of

the time necessary to collect, and send the

measured data to a desired place. As it was shown

in the above points, the time necessary to

implement each of the above depends on:

 The prescaler (affecting the operating time of

the ADC converter),

 Data transfer locations - recording to SD card or

PC (USART and baud rate parameter),

 The type of transferred data,

 μC time for performing other activities (such as

data transform, checking the condition or

stopping the measurement, etc.).

Taking into account the previously presented

results, it was assumed that:

 BR = 115200 bps - due to the stability of data

transmission (Serial port (Baud Rate)).

 Prescaler = 16 - due to the stability of the

measurement results. The higher value

increased the measurement error (section 4.2.1).

Table 11 contains the results for the above

settings. The results from Table 11 can be

considered as the maximum frequencies that can be

obtained using standard libraries when measuring

one program-triggered ADC channel and data

transmission to a PC or SD card. This table shows

also measured time and time

DIAGNOSTYKA, Vol. 20, No. 2 (2019)

Baranski R, Galewski MS, Nitkiewicz S.: The study of Arduino Uno feasibility for DAQ purposes

46

Table 11 Summaric times and fp (prescaler = 16,

BR = 115200 bps)

time

(us)

fp

(kHz)

Data

type
ADC send sum mea compute measure

PC
ASCII

15.56

508.05 523.61 507.92 1.910 1.969

BIN 166.46 182.02 164.22 5.494 6.089

SD
ASCII 239.9 255.46 250.78 3.915 3.988

BIN 77.7 93.26 101.7 10.723 9.833

The table shows both: the measured time (mea)

and the total time of the previously calculated

components (sum).

Obtained frequencies are quite high, because in

practice (last column of Table 11) in the case of

operations on binary data, they reach 6089 Hz for

single channel measurement and sending data to PC

and 9833 Hz for SD card data recording.

It should be emphasized that in the above case

no mechanism was applied to ensure uniformity of

sampling. Table 12 illustrates the results when

using interrupts triggered by Timer1 counter set to

CTC mode for various OCR1A register settings.

The timer's settings have been determined so as to

obtain integer frequencies not greater than the

sampling rates obtained with continuous

uncontrolled time measurement. Table 12 presents

the set values.

Table 12 Interrupt settings

Timer 1

Mode
OCR1A

fp

(Hz)

PC
ASCII CTC 1249 1600

BIN CTC 3124 5120

SD
ASCII CTC 499 4000

BIN CTC 249 8000

Summarizing, when Arduino UNO is used as a

DAQ card measuring 1 channel without losing the

measurement resolution, it is possible to obtain

frequencies up to 5 kHz for on line data

transmission to PC in binary form and up to 8 kHz

for writing to an SD card.

It should be noted that these are the maximum

theoretical values. The samples taken must still be

processed. If the processing is included in the

interrupt service function, the service time cannot

be longer than the time spent until the next

interruption because the processor will not be able

to finish the interrupt service before the next

request. If in the interrupt handling routine it will

only read the measurement and its processing will

be placed for example in the main loop, then either

the samples will be read, but the algorithm will not

be able to process them or the sample value can be

replaced by another before the algorithm reads it.

7. DISCUSSION

The presented research results allow authors to

conclude that using Arduino UNO makes it

possible to build a data acquisition system that

gives reliable results. It has some limitations

resulting from the components used. For example.

the technical paper [30], point 1.8, contains a line:

„The ADC accuracy also depends on the ADC

clock. The recommended maximum ADC clock

frequency is limited by the internal DAC in the

conversion circuitry. For optimum performance,

the ADC clock should not exceed 200kHz.

However, frequencies up to 1 MHz do not reduce

the ADC resolution significantly.”.

On the one hand, the manufacturer recommends

the use of ADC clock below 200 kHz, but at the

same time does not give reason to believe that the

use of 1 MHz clocking will noticeably affect the

measurement results.

However, given the drop in the sampling rate

resulting from the selection of interrupts, one can

safely reduce the value of the ADC clock to get

closer to the recommended 200 kHz. This will not

affect the total reduction of the sampling frequency

of the signal (based on Table 11, ADC time is only

20% of total time in case of send BIN data to SD

card and 3% of total time in case of send ASCII

data to PC).

When analyzing the results, one must realize

that the measurement of values by ADC is only a

part of the signal processing. If subsequent samples

must be processed on a regular basis (e.g. in control

systems), it is necessary to pay attention to the

computational efficiency of the microcontroller. It

must be sufficient to actually be able to implement

the processing algorithm during one sampling

period. Although the processing time strongly

depends on the specific algorithm used, the

dependencies presented in this article may be used

to estimate the remaining components of the total

processing time of one sample and, consequently,

help the reader to make more conscious decisions

regarding the use of Arduino UNO in measuring

tasks of analog signals.

When analyzing the presented results (Table 8),

it should also be emphasized that only triggering

the measurement in the time instants indicated by

the timer and using interrupts mechanism

guarantees a constant frequency of signal

measurement. Software triggering does not give

such a confidence.

At the same time it is worth paying attention to

the accuracy of the clock frequency of the entire

microcontroller system. If it is particularly

important, then the exchange of the ceramic

oscillator to quartz one should be considered,

which, however, involves interference in the UNO

PCB board.

Resuming, Arduino UNO can be the basis for

the construction of a simple DAQ card which can

achieve sampling frequencies of several kHz. In

DIAGNOSTYKA, Vol. 20, No. 2 (2019)

Baranski R, Galewski MS, Nitkiewicz S.: The study of Arduino Uno feasibility for DAQ purposes

47

fact the limit lies not in ADC capabilities itself but

in the ability to process subsequent samples (μC

performance, data transfer to PC or writing them to

the SD card).

SOURCE OF FUNDING

This work was supported by the AGH

University of Science and Technology [project

number 16.16.130.942/KMiW]; Gdansk University

of Technology statutory research; University of

Warmia and Mazury statutory research.

REFERENCES

1. Chen YC, Shen HY, Chen HY, Hsu CH. Low Cost

Arduino DAQ Development and Implementation on

an Android App for Power Frequency Measurement,

2016 International Symposium on Computer,

Consumer and Control (IS3C), Xi'an, 2016:99-102.

https://doi.org/10.1109/IS3C.2016.36

2. González A, Olazagoitia JL, Vinolas J. A Low-Cost

Data Acquisition System for Automobile Dynamics

Applications. Sensors, 2018;18(2): 366.

https://doi.org/10.3390/s18020366

3. Jaskuła M, Łazoryszczak M, Peryt S. Fast MEMS

application prototyping using Arduino/LabView pair.

Meas. Autom. Monit., 2015; 61(12).

4. Carre A, Williamson T. Design and validation of a

low cost indoor environment quality data logger.

Energy Build., 2018;158:1751–1761

https://doi.org/10.1016/j.enbuild.2017.11.051

5. Zalabarria U, Irigoyen E, Martínez R, ArechaldeJ.

Acquisition and Fuzzy Processing of Physiological

Signals to Obtain Human Stress Level Using Low

Cost Portable Hardware, Advances in Intelligent

Systems and Computing, 2018; 649: 68–78.

https://doi.org/10.1007/978-3-319-67180-2_7

6. Corbellini S, Vallan A. Arduino-based portable

system for bioelectrical impedance measurement.

IEEE MeMeA 2014 - IEEE International Symposium

on Medical Measurements and

Applications, Proceedings, 2014:1–5.

https://doi.org/10.1109/MeMeA.2014.6860044

7. What is Arduino? [Online]. Available:

https://www.arduino.cc/en/Guide/Introduction.

[Accessed: 20-Apr-2017].

8. Arduino, Compare board specs. 2017. [Online].

Available:

https://www.arduino.cc/en/Products/Compare.

[Accessed: 14-Apr-2017].

9. Galewski MA. STM32: Applications and exercises in

C language, in Polish. Wydawnictwo BTC, 2011.

10. Smith SW. Digital signal processing: a practical

guide for engineers and scientists. Newnes, 2003.

11. Greiman A. Arduino FAT16/FAT32 Library. 2017-

04-26, 2017. [Online]. Available:

https://github.com/greiman/SdFat. [Accessed: 23-

Aug-2017].

12. Miesowicz K, Staszewski WJ, Korbiel T. Analysis of

Barkhausen noise using wavelet-based fractal signal

processing for fatigue crack detection. International

Journal of Fatigue, 2016; 83:109–116.

https://doi.org/10.1016/j.ijfatigue.2015.10.002

13. Moreno JC, Sánchez AM, Baños A. Recent Advances

in Circuits and Systems, no. Csc. WSEAS Press,

1998.

14. Barański R. Sound level meter as software

application. Acta Phys. Pol. A, 2014;125(4A): 66–70,

https://doi.org/10.12693/APhysPolA.125.A-66

15. Nowoświat A, Olechowska M. Fast estimation of

speech transmission index using the reverberation

time. Appl. Acoust., 2016; 102:55–61.

https://doi.org/10.1016/j.apacoust.2015.09.001

16. Konior M, Klaczynski M, Wszolek W. Reduction of

speech signal deformation in patients after nasal

septum surgery (septolplasty). Acta Phys. Pol. A,

2011; 119(6A):1000–1004.

https://doi.org/10.12693/APhysPolA.119.1000

17. Ozga A. Scientific ideas included in the concepts of

bioacoustics, acoustic ecology, ecoacoustics,

soundscape ecology, and vibroacoustics. Arch Acoust

2017; 42 :415–21. https://doi.org/10.1515/aoa-2017-

0043.

18. Barański R, Grzeczka A. Simply and low coast

electromyography signal amplifier. Diagnostyka.

2017;18(4):69-77.

19. Barański R, Kozupa A. Hand grip-EMG muscle

response. Acta Phys Pol A 2014;125:A-7-A-10.

https://doi.org/10.12693/APhysPolA.125.A-7.

20. Listewnik K, Grzeczka G, Klaczynski M, Cioch W.

An on-line diagnostics application for evaluation of

machine vibration based on standard ISO 10816-1.

vol. 17. JVE International Ltd.; 2015.

21. Atmel Corporation, AVR121: Enhancing ADC

resolution by oversampling. 2005.

22. Gammon N. “millis() overflow ... a bad thing?” 2013-

08-26, 2013. [Online].

Available: http://www.gammon.com.au/millis

[Accessed: 23-Aug-2017].

23. Arduino, Arduino: micros(), 2017. [Online].

Available:

https://www.arduino.cc/en/Reference/Micros.

[Accessed: 23-Aug-2017].

24. Eli JM. Examination of the Arduino micros()

Function | µC eXperiment, 2012-03-17, 2012.

[Online]. Available:

https://ucexperiment.wordpress.com/2012/03/17/exa

mination-of-the-arduino-micros-function/. [Accessed:

23-Aug-2017].

25. Gammon N. ADC conversion on the Arduino

(analogRead), 2015-03-17, 2015. [Online].

Available: https://www.gammon.com.au/adc

[Accessed: 09-Jun-2017].

26. Atmel, ATmega48A/PA/88A/PA/168A/PA/328/P

DataSheet, AVR Microcontrollers, p. 660, 2015.

27. Atmel Corporation, ATmega328/P. 2016.

28. Gammon N. Interrupts, 2012-01-08, 2012. [Online].

Available: http://www.gammon.com.au/interrupts

[Accessed: 23-Aug-2017].

29. Gammon N. Timers and counters. 2012-01-17,

2012. [Online]. Available:

https://www.gammon.com.au/timers. [Accessed: 23-

Oct-2017].

30. Atmel, AVR120 : Characterization and Calibration of

the ADC on an AVR Microcontrollers Application

Note. 2006:. 1–15.

Received 2019-02-12

Accepted 2019-05-06

Available online 2019-05-07

https://doi.org/10.1109/IS3C.2016.36
https://doi.org/10.3390/s18020366
https://doi.org/10.1016/j.enbuild.2017.11.051
https://doi.org/10.1007/978-3-319-67180-2_7
https://doi.org/10.1109/MeMeA.2014.6860044
https://www.arduino.cc/en/Guide/Introduction
https://www.arduino.cc/en/Products/Compare
https://github.com/greiman/SdFat
https://doi.org/10.1016/j.ijfatigue.2015.10.002
https://doi.org/10.12693/APhysPolA.125.A-66
https://doi.org/10.1016/j.apacoust.2015.09.001
https://doi.org/10.12693/APhysPolA.119.1000
https://doi.org/10.1515/aoa-2017-0043
https://doi.org/10.1515/aoa-2017-0043
https://doi.org/10.12693/APhysPolA.125.A-7
http://www.gammon.com.au/millis
https://www.arduino.cc/en/Reference/Micros
https://ucexperiment.wordpress.com/2012/03/17/examination-of-the-arduino-micros-function/
https://ucexperiment.wordpress.com/2012/03/17/examination-of-the-arduino-micros-function/
https://www.gammon.com.au/adc
http://www.gammon.com.au/interrupts
https://www.gammon.com.au/timers

DIAGNOSTYKA, Vol. 20, No. 2 (2019)

Baranski R, Galewski MS, Nitkiewicz S.: The study of Arduino Uno feasibility for DAQ purposes

48

Eng, PhD Robert ffffffffffff

BARAŃSKI Postdoctoral

researcher in the Department

of Mechanics and

Vibroacoustics, AGH

University of Science and

Technology. His scientific

interests focus on vibrations

and acoustics, biomechanics,

EMG signals analysis,

dedicated devices for

rehabilitation, building flexible

diagnostic and measurement systems.

DSc. PhD. Marek

GALEWSKI works in a

Department of Mechanics and

Mechtronics at Gdansk

University of Technology. His

scientific interests concentrate

on vibrations measurements,

modal identification,

applications of Artificial

Intelligence, signal processing,

measurement systems

integration and programming.

DSc. PhD. Szymon

NITKIEWICZ, Assistant

Professor in the Department

of Mechatronics and IT

Education, Specialist in the

School of Medicine, Collegium

Medicum, University of

Warmia and Mazury in

Olsztyn. At his work, focuses

on rehabilitation, biomechanics, diagnostics devices.

